HY5 and phytochrome activity modulate shoot to root coordination during thermomorphogenesis
نویسندگان
چکیده
منابع مشابه
Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition
Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-t...
متن کاملThe DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis.
Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is current...
متن کاملThe COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity.
Arabidopsis COP1 is a constitutive repressor of photomorphogenesis that interacts with photomorphogenesis-promoting factors such as HY5 to promote their proteasome-mediated degradation. SPA1 is a repressor of phytochrome A-mediated responses to far-red light. Here we report that COP1 acts as part of a large protein complex and interacts with SPA1 in a light-dependent manner. We further demonstr...
متن کاملDissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway
ELONGATED HYPOCOTYL 5 (HY5), a member of the bZIP gene family, is a positive regulator of the light signaling pathway in Arabidopsis thaliana. Whereas the hy5 mutant exhibits an elongated hypocotyl when grown in the light, the hy5 homolog (hyh) mutant does not. Although the functions of HY5 and HYH in light-mediated seedling development have been revealed, the tissue-specific expression pattern...
متن کاملOpposite Root Growth Phenotypes of hy5 versus hy5 hyh Mutants Correlate with Increased Constitutive Auxin Signaling
The Arabidopsis transcription factor HY5 controls light-induced gene expression downstream of photoreceptors and plays an important role in the switch of seedling shoots from dark-adapted to light-adapted development. In addition, HY5 has been implicated in plant hormone signaling, accounting for the accelerated root system growth phenotype of hy5 mutants. Mutants in the close HY5 homolog HYH r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Development
سال: 2020
ISSN: 1477-9129,0950-1991
DOI: 10.1242/dev.192625